抽象的な

Prediction behavior of high frequency modulated by a 16 lengths Golay code undergoing honey attenuation

Vincent De Paul  

Optical microscopic analysis of honey is time consuming due to the period needed to prepare samples. Time reduction could be achieved with ultrasound microscopy. This paper investigates the behavior of 125 MHz signal modulated by 16-bits Golay code spread out through a honey sample containing pollen. A bipolar phase shift keying (BPSK) modulation of 125 MHz frequency by 16-bits Golay code was implemented in Simulink/Matlab environment. The frequency implemented was set up considering the acoustic properties of honey containing pollen, the thickness of the sample and the size of pollen. At this frequency, the evaluated attenuation coefficient of honey containing pollen was 0.135 dB/µm/MHZ(γ =1); it depends on the power factor γ related to the scattering medium, and the delay induces by the size of pollen. The impact of these parameters, added to 5dB White Gaussian Noise on 200 V magnitudes BPSK Golay sequences, decreased the autocorrelation function magnitude from 8×104 V to 1.5×104 V. The width (Wd) decreases from 4 ns at 0.135 dB/µm/MHz(γ =1) to 3.5 ns at 16.875 dB/µm/MHz(γ =2), when the Pulse Side lobe Level (PSL) increases from -22.79 dB at 1.509 dB/µm/MHz(γ =1) to -9.54 dB at 16.875 dB/µm/MHz(γ =2).  

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Chemical Abstracts Service (CAS)
Google Scholar
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos IF
Electronic Journals Library
RefSeek
Hamdard University
World Catalogue of Scientific Journals
IndianScience.in
Scholarsteer
Publons
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る