抽象的な

Design productivity, compilation and acceleration for data analytic applications

 Deming Chen

 Deep Neural Networks (DNNs) are computation intensive. Without efficient hardware implementations of DNNs, many promising AI applications will not be practically realizable. In this talk, we will analyze several challenges facing the AI community for mapping DNNs to hardware accelerators. Especially, we will evaluate FPGA's potential role in accelerating DNNs for both the cloud and edge devices.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Chemical Abstracts Service (CAS)
Google Scholar
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Cosmos IF
Electronic Journals Library
RefSeek
Hamdard University
World Catalogue of Scientific Journals
IndianScience.in
Scholarsteer
Publons
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る