抽象的な

A Novel Method for Atmospheric Turbulence Reduction Using DD-DWT Based Image Fusion

G.Srujana, N.M. Ramalingeswararao

A long-distance imaging system can be strongly affected by atmospheric turbulence. Here a novel method is suggested for justifying the effects of atmospheric distortion on practical images, especially airborne turbulence which can cruelly corrupt a region of interest (ROI). In order to extract precise details about substance behind the distorted layer, a simple and capable frame selection method is proposed to select informative ROIs only from good worth frames. The ROIs in each frame are then registered to further reduce offsets and distortions. The space-varying alteration problem is solved using region-level fusion based on the double density- tree discrete wavelet transform DD-DWT. Finally, for applying double density dual tree wavelet transform is coming to better results. This is capable of estimating the quality in both full and no reference scenarios. The proposed method is shown appreciably to outperform accessible methods, providing enhanced situational attentiveness in a range of real time surveillance scenarios.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません