抽象的な

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces

K.C.Jain, Praphull Chhabra

Divergence measures are basically measures of distance between two probability distributions or these are useful for comparing two probability distributions. Depending on the nature of the problem, the different divergences are suitable. So it is always desirable to create a new divergence measure. There are several generalized functional divergences, such as: Csiszar divergence, Renyi- like divergence, Bregman divergence, Burbea- Rao divergence etc. all. In this paper, we obtain a series of divergences corresponding to a series of convex functions by using generalized Csiszar divergence. Further, we define the properties of convex functions and divergences, compare the divergences and lastly introduce the series of metric spaces.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る