抽象的な

Personalized Ontology Based on Consumer Emotion and Behavior Analysis

Saranya.R, Sathya.R, Umaiyal.R.M, Kanmani.P

The relationships between consumer emotions and their buying behaviors have been well documented. Technology-savvy consumers often use the web to find information on products and services before they commit to buying. We propose a semantic web usage mining approach for discovering periodic web access patterns from annotated web usage logs which incorporates information on consumer emotions and behaviors through self-reporting and behavioral tracking. We use fuzzy logic to represent real-life temporal concepts (e.g., morning) and requested resource attributes (ontological domain concepts for the requested URLs) of periodic pattern based web access activities. These fuzzy temporal and resource representations, which contain both behavioral and emotional cues, are incorporated into a Personal Web Usage Lattice that models the user’s web access activities. From this, we generate a Personal Web Usage Ontology written in OWL, which enables semantic web applications such as personalized web resources recommendation. Finally, we demonstrate the effectiveness of our approach by presenting experimental results in the context of personalized web resources recommendation with varying degrees of emotional influence. Emotional influence has been found to contribute positively to adaptation in personalized recommendation.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る