抽象的な

Neural Network Training By Gradient Descent Algorithms: Application on the Solar Cell

Fayrouz Dkhichi, Benyounes Oukarfi

This present paper deals with the parameter determination of solar cell by using an artificial neural network trained at every time, separately, by one algorithm among the optimization algorithms of gradient descent (Levenberg-Marquardt, Gauss-Newton, Quasi-Newton, steepest descent and conjugate gradient). This determination issue is made for different values of temperature and irradiance. The training process is insured by the minimization of the error generated at the network output. Therefore, from the outcomes obtained by each gradient descent algorithm, we conducted a comparative study between the overall of training algorithms in order to know which one had the best performances. As a result the Levenberg-Marquardt algorithm presents the best potential compared to the other investigated optimization algorithms of gradient descent

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る