抽象的な

Investigation of Atomization and Cavitation Characteristics in Nozzle

Badgujar Sachin Prabhakar, Sarode Pravin Laxmanrao , Khatik Juber Ah. Mo. Salim

The influence of fuel injector nozzle is critical to the performance and emissions of diesel engine. One of the most difficult problems encountered in the development of high-speed compression-ignition engine is to have the proper atomization of the fuel in the combustion chamber during the extremely short time available. Some of the important parameters including nozzle hole size, geometry, cavitations, convergence, velocity of fuel, density of air into which fuel is injected, affects to enhance the fuel atomization. Atomization is primarily occurs due to cavitation and turbulence in the vicinity of nozzle. In this paper discharge coefficient phenomenon is used, which accounts for the different orifice approach for the better atomization such as convergence. Numerical results shows that orifice having smaller outlet diameter gives increase in the coefficient of discharge with intent of increase in cavitations up to certain range causes to increase in atomization.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る