抽象的な

Image Denoising Techniques Using Wavelets

S.Y.Pattar,

The focus of this work is to develop performance-enhancing algorithm for denoising the signal by using wavelet transformation. The earlier methods used for denoising were based on FFT, where signal is transformed in to frequency domain and soft and hard threshold has been carried out for denoising. After comparing the performances, it has been seen if temporal characteristics of signal can be preserved, it would give better result .Thus, wavelet based denoising came into picture where transformation results in perseverance of frequency and temporal characteristics of the signal. In wavelet based denoising, while applying threshold techniques few signals are also lost. If the lost signal can be retrieved using signal statistical properties, it would give better result in terms of SNR. We tried to recover the lost signal in details part Importance of denoising comes when we talk about images, which play an important role in daily life application. Different techniques have been used for denoising of image, but these lose some of the image characteristics. We modified the existing stochastic algorithm to make it more adaptive. The results for Lena image are presented to establish the advantages that our modified stochastic algorithm provides over other techniques.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る