抽象的な

FEATURE SELECTION BY ROUGH â??QUICK REDUCT ALGORITHM

K.Anitha , Dr.P.Venkatesan

Feature Selection the process of finding the optimal subset for a given supplied data. In this paper we discuss about basic concepts and applications of Rough Set Theory in Feature Selection. The main advantage of Rough Set Feature Selection is it requires no additional parameters other than the original data. Rough Set is especially useful for domains where data collected are imprecise or incomplete about the domain objects. In this paper Quick-Reduct Algorithm is used to reduce the number of genes from gene expression data.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る