抽象的な

Efficient Optimization of Sparql Basic Graph Pattern

Ms.M.Manju, Mrs. R Gomathi

In this paper, we formalize the problem of Basic Graph Pat-tern (BGP) optimization for SPARQL queries and main memory graph implementations of RDF data. We define and analyze the characteristics of heuristics for selectivity based static BGP optimization. The heuristics range from simple triple pattern variable counting to more sophisticated selectivity estimation techniques. Customized summary statistics for RDF data enable the selectivity estimation of joined triple patterns and the development of efficient heuristics. Using the Lehigh University Benchmark (LUBM), we evaluate the performance of the heuristics for the queries provided by the LUBM and discuss some of them in more details.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません