抽象的な

Collaboration of Data Using M-Privacy

Thanjai Bharathi, A.Karthikeyan

We consider the collaborative data publishing problem for anonymizing horizontally partitioned data at multiple data providers. We consider a new type of “insider attack” by colluding data providers who may use their own data records (a subset of the overall data) in addition to the external background knowledge to infer the data records contributed by other data providers. The paper addresses this new threat and makes several contributions. First, we introduce the notion of mprivacy, which guarantees that the anonymized data satisfies a given privacy constraint against any group of up to m colluding data providers. Second, we present heuristic algorithms exploiting the equivalence group monotonicity of privacy constraints and adaptive ordering techniques for efficiently checking m-privacy given a set of records. Finally, we present a data provider-aware anonymization algorithm with adaptive m-privacy checking strategies to ensure high utility and m-privacy of anonymized data with efficiency. Experiments on real-life datasets suggest that our approach achieves better or comparable utility and efficiency than existing and baseline algorithms while providing m-privacy guarantee.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る