抽象的な

Bias correction of ANN based statistically ownscaled precipitation data for the Chaliyar river basin

Chithra NR, Santosh G Thampi

Any study to assess the impact of climate change on hydrology requires future climate scenarios at river basin scale. General Circulation Models (GCM) are the only reliable source for future climate scenarios, but they perform well only at coarse scale. Also, it may not be possible to straight away use the output from GCMs in hydrologic models applied at river basin scale. GCM simulations need to be downscaled to river basin scale. Uncorrected bias in the downscaled data, if any, should be corrected before the downscaled data is used in hydrologic applications. In this study, an advanced nonlinear bias correction method is applied to Artificial Neural Network (ANN) based downscaling models to obtain projections of monthly precipitation of station scale. The models were validated through application to downscale the monthly precipitation at two rain gauge stations, one in the Chaliyar river basin located in the humid tropics in Kerala, India, and other located close to it. The probable predictor variables are extracted from the National Centre for Environmental Prediction and National Centre for Atmospheric Research (NCEP/NCAR) reanalysis data and simulations from the third generation Canadian Coupled Global Climate Model (CGCM3) for the twentieth century experiment, 20C3M. The potential predictors were selected based on the values of the correlation coefficient between NCEP predictors and predictand precipitation and also between NCEP predictors and GCM predictors. Separate models were developed for each station and for each of the season and separate sets of potential predictors were used in each of the models. The models were validated using the data after year 2000; the performance of the models was reasonably good except for a few extremes.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る