抽象的な

AN EXPERIMENTAL INVESTIGATION ON THE ENHANCEMENT OF FORCED ONVECTION HEAT TRANSFER USING TiO2- WATER NANOFLUIDS IN TURBULENT REGIME

Sanjo George C, Krishnakumar T.S

Thermal Properties of conventional base fluids in heat transfer equipments are poor. By suspending nanometer sized metallic particles in these base fluids, the thermal properties of base fluids can be increased significantly. By using this nanofluids instead of conventional fluids, the heat transfer rate can be increased. An experimental setup was designed and fabricated for the measurement of convective heat transfer coefficient of nanofluids. Experiments were conducted by varying the flow rates and particle volume concentration in turbulent regime. By analyzing the results it was found that the heat transfer coefficient increases with increase in Reynolds number.As the concentration of nanoparticle increases, the convective heat transfer coefficient first increases and then decreases. This may be due to the settling of nanoparticles at higher concentrations. Dittus-Boelter correlation was modified to suit TiO 2-water nanofluids using the experimental data for a Reynolds number range of 4000 to 10,000.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

Academic Keys
ResearchBible
CiteFactor
Cosmos IF
RefSeek
Hamdard University
World Catalogue of Scientific Journals
Scholarsteer
International Innovative Journal Impact Factor (IIJIF)
International Institute of Organised Research (I2OR)
Cosmos

もっと見る