抽象的な

A PERFORMANCE ANALYSIS OF LMS, RLS AND LATTICE BASED ALGORITHMS AS APPLIED TO THE AREA OF LINEAR PREDICTION

Nasrin Akhter, Lilatul Ferdouse, Fariha Tasmin Jaigirdar and Tamanna Haque Nipa

This paper presents a performance analysis of three categories of adaptive filtering algorithms in the application of linear prediction. The classes of algorithms considered are Least-Mean-Square (LMS) based, Recursive Least-Squares (RLS) based and Lattice based adaptive filtering algorithms. The performances of the algorithms in each class are compared in terms of convergence behavior, execution time and filter length. The analysis determines the best converging algorithm from each class. Finally the best performing algorithm for adaptive linear prediction is selected.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません